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This paper proposes a module-based and unified approach to chaotic circuit design, where the
description is based on the state equations without physical dimensions for simplicity of a general
discussion. The main design process consists of transformation of state variables, transformation
from differential to integral operations, and transformation of the time-scale. The designed
circuit consists of anti-adder module integrator module, and inverter module. A novel 3-scroll
Chua’s circuit and a generalized Lorenz-like circuit are designed and implemented for verifying
the effectiveness of this systematic circuit design methodology. Experimental observations are
provided for confirmation. Comparing with the traditional circuit design methods, this new
design approach has the following typical characteristics: (i) module-based and unified design;
(ii) independent adjustment of system parameters; (iii) adjustment of distribution regions for
the frequency spectra of chaotic signals; (iv) prominent observability.
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1. Introduction

Over the last four decades, chaos has been inten-
sively investigated within the nonlinear science,
information science, and engineering communi-
ties [Chen & Dong, 1998]. Aiming at real-world

applications, nonlinear circuit design has become a
key issue in chaos-based technologies.

Remarkably, Chua’s circuit [Chua et al., 1986;
Kennedy, 1993; Zhong et al., 2002] is a paradigm
in the nonlinear circuit theory. Based on Chua’s
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circuit, many modified nonlinear circuits have been
designed and implemented [Elwakil & Kennedy,
2000], including the MCK circuit [Matsumoto et al.,
1986], revised Chua’s circuit [Yin, 1997], and var-
ious multi-scroll circuits [Han et al., 2005; Lü &
Chen, 2006; Lü et al., 2004b; Lü et al., 2004c; Lü
et al., 2006; Lü et al., 2003; Suykens & Vandewalle,
1993; Yalcin et al., 2000; Yalcin et al., 2002]. Most
of these circuits are constructed by using capacitors,
inductors and resistors along with Chua’s diode.
In this paper, we propose a novel circuit design
method in which the basic design idea is very dif-
ferent from Chua’s circuit but can realize the same
chaotic dynamics and even much more.

As we know now, there are various design
approaches of chaotic circuits by using various elec-
tronic or logic devices reported in the literature. For
example, Elwakil et al. [2003[ applied the so-called
current feedback operational amplifiers (CFOAs)
and digital logic operations to design the Lorenz-
like circuit for implementing a four-wing butter-
fly attractor; Zhong and Tang [2002] designed the
Chen circuit and Li et al. [2005] devised the hyper-
chaotic Chen circuit both based on the dimension-
less state equations of the circuits. Most of the
circuit design methods as above are not based on
a common and unified framework and do not have
the universality and compatibility. In the follow-
ing, based on the dimensionless state equations
of the circuit, a module-based and unified circuit
design approach is then proposed. The designed
circuit consists of three different functional blocks:
anti-adder module, integrator module and inverter
module. The main design process consists of trans-
formation of state variables, transformation from
differential to integral operations, and transforma-
tion of the time-scale. Comparing with the tradi-
tional circuit design methods, such as those of the
Lorenz-like circuit [Elwakil et al., 2003], Chen cir-
cuit [Zhong & Tang, 2002], and hyperchaotic Chen
circuit [Li et al., 2005], this new method has the fol-
lowing four typical characteristics: (i) module-based
and unified design; (ii) independent adjustment of
system parameters; (iii) adjustment of distribution
regions for the frequency spectra of chaotic signals;
(iv) prominent observability.

It should be especially pointed out that all state
variables in the forms of the original or inverse vari-
ables input to the inverting terminals of the anti-
adders and all noninverting terminals are connected
to the earth in this proposed approach. However,
in most traditional circuit design methods based

on the dimensionless state equations of the circuits
[Zhong et al., 2002; Zhong & Tang, 2002; Li et al.,
2005], all state variables simultaneously input to
the inverting and noninverting terminals. Therefore,
all parameters in our method are independently
adjustable, however, all parameters in the tradi-
tional approaches as above are coupled together
and not independently adjustable. To verify the
effectiveness of this new approach, a novel 3-scroll
Chua’s circuit and a generalized Lorenz-like circuit
are designed and implemented with experimental
observations provided for confirmation. Moreover,
the proposed circuit design method can be easily
and naturally generalized to the circuit designs of
other chaotic circuits.

The rest of this paper is organized as follows. In
Sec. 2, the new systematic circuit design approach
is described and discussed. A novel 3-scroll Chua’s
circuit and a generalized Lorenz-like circuit are then
designed and implemented in Secs. 3 and 4, respec-
tively, with experimental observations reported.
Finally, some conclusions are drawn in Sec. 5.

2. A Module-Based and Unified
Circuit Design Approach

This section proposes a module-based and unified
circuit design approach, in which the fundamental
design principle differs from those of the traditional
circuit design methods.

This approach is based on the dimensionless
state equations of the circuit. The main procedure
can be summarized into three key steps; that is,
Step I: transformation of state variables; Step II:
transformation from differential to integral opera-
tions; Step III: transformation of the time-scale.

To start, consider a general system of n-
dimensional state equations described by




dx1

dτ
=

n∑
i=1

a1ixi +
n∑

j=1

n∑
p=1

b1
jpxjxp

+ · · · + f1(x1, x2, . . . , xn)

dx2

dτ
=

n∑
i=1

a2ixi +
n∑

j=1

n∑
p=1

b2
jpxjxp

+ · · · + f2(x1, x2, . . . , xn)
· · · · · · · · ·

dxn

dτ
=

n∑
i=1

anixi +
n∑

j=1

n∑
p=1

bn
jpxjxp

+ · · · + fn(x1, x2, . . . , xn),

(1)
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where the first sum represents the linear terms
and the other sums are all cross products, with
fi(x1, x2, . . . , xn) (1 ≤ i ≤ n) being the different
types of nonlinear functions, which can be satu-
rated function series, hysteresis function series, step
wave, sawtooth wave, triangular wave, transconduc-
tor wave and exponent functions, and so on.

It is well known that the dynamic regions of
most electronic devices are very limited. For exam-
ple, the linear dynamic region of the operational
amplifier TL082 with electrical source of ±15 V is
only within ± 13.5 V. However, for many chaotic
systems, the dynamic regions of the state variables
in the dimensionless state equations are far exceed-
ing the linear dynamic regions of the operational
amplifiers. To physically realize these chaotic sys-
tems, one has to compress the dynamic regions of all
the state variables into the linear dynamic regions
of the operational amplifiers. To do so, one may let
x′

i = kxi(1 ≤ i ≤ N), where k ≤ 1 is the compressed
ratio. Then, according to Eq. (1), one has




dx′
1

dτ
=

n∑
i=1

a1ix
′
i +

1
k

n∑
j=1

n∑
p=1

b1
jpx

′
jx

′
p

+ · · · + kf1

(
x′

1

k
,
x′

2

k
, . . . ,

x′
n

k

)

dx′
2

dτ
=

n∑
i=1

a2ix
′
i +

1
k

n∑
j=1

n∑
p=1

b2
jpx

′
jx

′
p

+ · · · + kf2

(
x′

1

k
,
x′

2

k
, . . . ,

x′
n

k

)

· · · · · · · · ·
dx′

n

dτ
=

n∑
i=1

anix
′
i +

1
k

n∑
j=1

n∑
p=1

bn
jpx

′
jx

′
p

+ · · · + kfn

(
x′

1

k
,
x′

2

k
, . . . ,

x′
n

k

)
.

(2)

It is quite easy to obtain the integral form of
Eq. (2), based on which one can further get the final
circuit equation by using a transformation of the
time-scale. According to the above circuit equation,
one can easily design a block circuit diagram, which
includes three main modules: anti-adders module
integrators module and inverters module.

In the following, this circuit design approach
is illustrated by working out two typical examples:
a novel 3-scroll Chua’s circuit and a generalized
Lorenz-like system.

3. A Novel 3-Scroll Chua’s Circuit

It is known that the piecewise linear function in
the original Chua’s circuit can be replaced by other
nonlinear functions, such as the sine function [Tang
et al., 2001], exponent function [Abdomerovic et al.,
2000], and polynomial function [Tang & Man, 1998;
Zhong, 1994], so as to generate various double-scroll
or even multi-scroll chaotic attractors from the cir-
cuit [Yu et al., 2004a; Yu et al., 2004b; Yu et al.,
2005]. Here, we are especially interested in polyno-
mial characteristic functions, such as ax+bx|x|, ax+
bx3, a + bx + cx2 + dx3, etc. Notice that all these
polynomial characteristic functions can only gener-
ate double-scroll Chua’s attractors. To create more
scrolls in Chua’s circuit, the polynomial character-
istic function is first modified to be ax+bx|x|+cx3.
Thus, Chua’s circuit equation becomes




dx

dτ
= α(y − h(x))

dy

dτ
= x − y + z

dz

dτ
= −βy,

(3)

where α = 12.8, β = 19.1, h(x) = ax + bx|x| + cx3.
When a = 0.472, b = −1, c = 0.47, the polyno-
mial characteristic curve is shown in Fig. 1. Here,
five equilibria, four turning points and five char-
acteristic regions are denoted by xi(0 ≤ i ≤ 4),
ei(1 ≤ i ≤ 4) and Di(0 ≤ i ≤ 4), respectively. Fig-
ure 2 shows the numerical simulation results of the

−1.5 −1 −0.5 0 0.5 1 1.5
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

x

h(
x)

D
4

D
2

D
0

D
1

D
3

x
4 x

2
x

0
x

1
x

3
e

4 e
2

e
1

e
3

Fig. 1. h(x) and its five characteristic regions.
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Fig. 2. Plane projection of the 3-scroll Chua’s attractor.

3-scroll Chua’s attractor with Lyapunov exponents:
λ1 = 0.2, λ2 = 0, λ3 = −5.56.

Both theoretical analysis and numerical sim-
ulations show that there are various bifurcation
phenomena in system (3). Figures 3(a)–3(d) show
the bifurcation diagrams versus parameter a with
α = 12.8, β = 19.1, b = −1, c = 0.47, parameter
b with α = 12.8, β = 19.1, a = 0.472, c = 0.47,

parameter c with α = 12.8, β = 19.1, a = 0.472,
b = −1, and parameter α with β = 19.1, a = 0.472,
b = −1, c = 0.47, respectively. According to Fig. 3,
there are some continuous chaotic regions for par-
ameters α, a, b, c, which are very useful for hardware
implementation.

When a = 0.472, b = −1, c = 0.47, system (3)
has five equilibria: (xi, 0,−xi)(0 ≤ i ≤ 4), where
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(a)

(b)

Fig. 3. Bifurcation diagrams of parameters a, b, c, α.
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(c)

(d)

Fig. 3. (Continued)
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x0 = 0, x1,2 = ±0.7068, x3,4 = ±1.4209. Moreover,
the Jacobians of system (3) evaluated at its equilib-
ria (xi, 0,−xi)(0 ≤ i ≤ 4) are given by

J(xi) =



−α

dh(x)
dx

∣∣∣∣
x=xi

α 0

1 −1 1
0 −β 0




for 0 ≤ i ≤ 4. Their corresponding eigenvalues
are: γ0 = −7.4606, σ0 ± jω0 = 0.2095 ± j3.9273,
γ1,2 = 4.3504, σ1,2 ± jω1,2 = −1.1570 ± j3.4629,
and γ3,4 = −7.5171, σ3,4±jω3,4 = 0.2066±j3.9328,
respectively. Obviously, x0, x3, x4 are the equilib-
ria with index 2, which can generate scrolls in the
attractor; on the other hand, x1, x2 are the equi-
libria with index 1, which can connect neighboring
scrolls in the attractor.

In the following, a circuit diagram is designed to
physically realize the above 3-scroll Chua’s attrac-
tor. According to the circuit design method intro-
duced in Sec. 2, one firstly gets the corresponding
Eq. (3) after transformation of state variables, as
follows:



du

dτ
= α

[
v −

(
au +

b

k
u|u| + c

k2
u3

)]

dv

dτ
= u − v + w

dw

dτ
= −βv,

(4)

where k is the compressed ratio. From Fig. 2, one
can see that the dynamic regions of all the state
variables of system (3) belong to the linear dynamic
regions of the operational amplifiers. In this case,
one may simply let k = 1.

Thus, the integral form of system (4) is
given by



u =
∫

[−a11(−v) − a12h(u)]dτ

v =
∫

[−a21(−u) − a22v − a23(−w)]dτ

w =
∫

−a31vdτ,

(5)

where aij(1 ≤ i, j ≤ 3) are system parameters
and a11 = a12 = α = 12.8, a13 = a32 = a33 =
0, a21 = a22 = a23 = 1, a31 = β = 19.1.
h(u) = au+(b/k)u|u|+(c/k2)u3, a = 0.472, b = −1,
c = 0.47, k = 1. Based on system (5), one

can design a block circuit diagram to physically
realize the 3-scroll Chua’s attractor, as shown
in Fig. 4.

All operational amplifiers shown in Fig. 4 are
TL082, the supply voltages of the positive and
negative electrical sources are ±15 V. Moreover,
for convenient adjustment and higher precision, all
resistors are precisely adjustable resistors or poten-
tiometers. In addition, in Fig. 4, the operational
amplifiers OP1, OP4, OP7 are anti-adder mod-
ules; the operational amplifiers OP2, OP5, OP8
are anti-integrator modules; the operational
amplifiers OP3, OP6, OP9 are inverter modules.
Figures 4(a) and 4(b) are the basic Chua’s cir-
cuit and polynomial signal generator for h(u) =
au + (b/k)u|u| + (c/k2)u3, respectively. Here, the
absolute-value circuit is shown in the dashed-line
block of Fig. 4(b). From the generalized super-
position principle, the relationship between input
and output of the absolute-value circuit satisfies
u0 = −u − 2u1. For u < 0, the diodes D1 and D2

are connected and u1 = 0. Thus, u0 = −u > 0. For
u > 0, the diodes D1 and D2 are disconnected and
u1 = −u. Thus, u0 = −u + 2u = u > 0. Therefore,
u0 = |u|.

According to Fig. 4(b), the relationship
between the input and the output of the polyno-
mial signal generator is described by

h(u) =
Rn

Ra
u − Rn

10Rb
u|u| + Rn

100Rc
u3 (6)

where a = Rn/Ra, b/k = −(Rn/10Rb), c/k2 =
Rn/100Rc, k = 1. When Rn is fixed, one can adjust
the system parameters a, b/k, c/k2 of polynomial
h(u) by adjusting the resistors Ra, Rb, Rc, respec-
tively.

It follows from Fig. 4(a) that the state equation
of the nonlinear circuit is given by




u =
1

R0C0

∫ [
− Rf

R11
(−v) − Rf

R12
h(u)

]
dt

v =
1

R0C0

∫ [
− Rf

R21
(−u) − Rf

R22
v − Rf

R23
(−w)

]
dt

w =
1

R0C0

∫ [
− Rf

R31
v

]
dt.

(7)

Let τ = t/R0C0. Here, 1/R0C0 is the integral
constant of the integrators shown in Fig. 4(a), which
is also the transformation factor of the time-scale.
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Then, one obtains



u =
∫ [

− Rf

R11
(−v) − Rf

R12
h(u)

]
dτ

v =
∫ [

− Rf

R21
(−u) − Rf

R22
v − Rf

R23
(−w)

]
dτ

w =
∫ [

− Rf

R31
v

]
dτ.

(8)

According to (5) and (8), all system parame-
ters are given by a11 = Rf/R11, a12 = Rf/R12,
a21 = Rf/R21, a22 = Rf/R22, a23 = Rf/R23,
a31 = Rf/R31. Let Rf = 100k, R11 = 7.8k, R12 =
7.8k, R21 = 100k, R22 = 100k, R23 = 100k, R31 =
5.3k. Then, one has a11 = a12 = 12.8, a21 =
a22 = a23 = 1, a31 = 19.1. Since there are
three anti-adder modules in Fig. 4, for a fixed

Rf , one can independently adjust various sys-
tem parameters, aij(1 ≤ i, j ≤ 3), by tuning
the corresponding resistors Rij(1 ≤ i, j ≤ 3) in
Fig. 4, respectively. Therefore, this independently
adjustable characteristic is one of the useful fea-
tures of the modular circuit design. Figure 5 shows
the experimental observations of the 3-scroll Chua’s
attractor.

From (7), the transformation factor of the
time-scale is completely determined by the integral
resistor R0 and integral capacitance C0. Compar-
ing with the traditional design methods, such as
that of Chua’s circuit, this module-based and uni-
fied design approach can change the distribution
region of the frequency spectrum of a chaotic sig-
nal as required by tuning integral resistor R0 or
integral capacitance C0 for real-world applications.
That is, when R0 (or C0) is decreasing, one can

(a)

(b)

Fig. 4. Circuit diagram for realizing the 3-scroll Chua’s attractor.
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(a) x − y plane, where x = 0.5 V/div, y = 1.0 V/div

(b) x − z plane, where x = 1V/div, z = 0.6 V/div

(c) y − z plane, where y = 1V/div, z = 0.6V/div

Fig. 5. Experimental observations of the 3-scroll Chua’s attractor.
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extend the distribution region of the frequency spec-
trum of the high-frequency end of a chaotic signal.
However, when R0 (or C0) is increasing, one can
reduce the distribution region of the frequency spec-
trum of the high-frequency end of a chaotic signal.
Therefore, comparing with the fixed capacitance
and inductance in Chua’s circuit, this adjusting
characteristic is very useful for real circuit design
and practical engineering applications.

Here, two typical examples are used to show the
effectiveness of this proposed design method. Fig-
ure 6 shows the waveforms and power spectrums
of the time domain of the variable x for two dif-
ferent cases: (I) C0 = 33nF, R0 = 50 kΩ and
(II) C0 = 33nF, R0 = 10 kΩ, respectively, where
the other parameters are given in Fig. 4. Our exper-
imental observations are consistent with the numer-
ical observations in Fig. 6.
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(b) Power spectrum of x, C0 = 33 nF, R0 = 50 kΩ

Fig. 6. Numerical simulations of the waveforms and power spectrums of variable x.
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(d) Power spectrum of x, C0 = 33 nF, R0 = 10 kΩ

Fig. 6. (Continued)

It is well known that almost all design meth-
ods of chaotic circuit are not beauideal. Comparing
with the traditional design approaches, such as
that of Chua’s circuit, the main disadvantage of
the proposed design method is that it is likely
to need more electronic devices. More electronic
devices may increase the total hardware errors.
However, one can minimize the total hardware

errors by using the electronic devices with high
precision.

4. Circuit Implementation of a
Generalized Lorenz-like System

A generalized Lorenz-like system was proposed in
[Lü & Chen, 2002; Lü et al., 2002], which is



1796 S. Yu et al.

(a) Original attractor

(b) Compressed attractor

Fig. 7. Numerical simulations of the generalized Lorenz-like system.

described by




dx

dτ
=

ab

a + b
x − yz

dy

dτ
= −ay + xz + d

dz

dτ
= −bz + xy.

(9)

When a = 10, b = 5, d = 5, system (9) has a Lorenz-
like chaotic attractor [Lü et al., 2004a], as shown in
Fig. 7(a).

Obviously, the dynamic regions of the state
variables x, y, z of system (8) are far exceeding the
linearly dynamic regions of the operational ampli-
fiers. To physically realize system (9), one has to
compress the dynamic regions of the state variables
x, y, z. To do so, let u = kx, v = ky,w = kz, where
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k = 0.1. Then, one gets


du

dτ
=

ab

a + b
u − vw

dv

dτ
= −av + 10uw + 10d

dw

dτ
= −bw + 10uv.

(10)

When a = 10, b = 5, d = 5, system (10) has a
chaotic attractor as shown in Fig. 7(b). Obviously,

the dynamic regions of the state variables x, y, z
of system (10) are compressed to be within
the linearly dynamic regions of the operational
amplifiers.

Similarly, based on the circuit design princi-
ple proposed in Sec. 2, one can construct a circuit
diagram, as shown in Fig. 8, to physically realize
system (10). Figure 9 shows the experimental
observations of the 4-scroll generalized Lorenz-like
chaotic attractor.

Fig. 8. Circuit diagram for realizing the generalized Lorenz-like system.

(a) x − y plane, x = 1.0 V/div, y = 0.6 V/div

Fig. 9. Experimental observations of the generalized Lorenz-like system.
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(b) x − z plane, x = 1.0 V/div, z = 1.0V/div

(c) y − z plane, where y = 1.0V/div, z = 1.2 V/div

Fig. 9. (Continued)

5. Conclusions

We have introduced a module-based and unified
approach to chaotic circuit design. This method
is based on the dimensionless state equations,
and the main design process consists of trans-
formation of state variables (which extends the
parameter ranges in hardware implementation of
nonlinear circuits), transformation from differen-
tial to integral operations, and transformation
of the time-scale. The designed circuit includes

three different function blocks: anti-adder module
integrator module and inverter module. Compar-
ing with the traditional circuit design methods,
this systematic approach has the following four
typical characteristics: (i) module-based and uni-
fied design; (ii) independent adjustment of sys-
tem parameters; (iii) adjustment of distribution
regions for the frequency spectra of chaotic sig-
nals; (iv) prominent observability. To measure
the current of the inductance of Chua’s circuit,
an additional circuit is needed to perform the
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current-voltage transformation. Moreover, a novel
3-scroll Chua’s circuit and a generalized Lorenz-like
circuit have been designed and implemented to ver-
ify the effectiveness of the new design methodology,
furthermore confirmed by experimental observa-
tions. It is believed that this module-based and
unified circuit design approach will have good appli-
cations in practice.
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Lü, J., Yu, X. & Chen, G. [2003] “Generating chaotic
attractors with multiple merged basins of attraction:
A switching piecewise-linear control approach,” IEEE
Trans. Circuits Syst.-I 50, 198–207.
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